CMPS 256 — ALGORITHMS AND DATA STRUCTURES
Summer 2011 — 2012
Midterm Exam
Friday July 13, 10:00 — 11:00 a.m.

Instructions.

This midterm is scored out of 100.

This midterm is open book and open notes: you can use the textbook, notes you have taken in
class, and your homework solutions. Show your work, as partial credit will be given.

You may use any algorithm that was covered in class. Just give the name of the algorithm and
the page number in the book where the algorithm is given.

Please draw a horizontal line to separate each answer from the next.
Best of luck!

Problem 1 (20 points)

(1.1) (4 points each) Give tilde approximations for the following:

1. N2+ 3NIgN
2. N2N 42N

3. 1+1/(1gN)

(1.2) (4 points each) State whether the following are true or false. Give a brief justification for
YyOUr answer.

1. n? = Q(n%%)

2. (Ign) = O(n)

Problem 2. (40 points) You are given an array A of size N, indexed as usual from 0 to N.
You are also given that A contains exactly 4 distinct values vg, v1, v2, v3. Formally:

(for all ¢ from 0 to N — 1 inclusive: A[i] = vy or A[i] = vy or A[i] = vg or A[i] = v3)
and
Vo < V1 < v < U3

You are also given what the actual values are.

(2.1) (20 points) Give a comparison-based sorting algorithm
lsort(int[] A, int vO, int v1, int v2, int v3)
which sorts A, where vO, v1, v2, v3 are the values occurring in A, as discussed above.

Your algorithm must have worst case running time in O(N). Remember that worst case is
a limit on the running time for all inputs, unlike average case running time. You may give
pseudocode or actual Java code. Do not make any assumptions about the relative
frequencies of occurrence of v0, vl, v2, v3.

(2.2) (20 points) Prove that your algorithm has worst case running time in O(N).
No credit for an O(N lg N) running time algorithm.
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Problem 3. (40 points) We wish to add to a regular BST a field min for each node x which
records the minimum value in the subtree roooted at x.

(3.1) (20 points) Give a modified put procedure (see text, p. 399) which maintains the min
field.

(3.2) (20 points) Prove that your modified put has worst case running time in O(h), where h
is the height of the BST. You do not have to handle deletion.

No credit for a put procedure with running time asymptotically larger than O(h).



Sample Solutions.

Problem 1 (20 points)

(1.1) (4 points each) Give tilde approximations for the following:

1. N>+ 3NlgN. Sample solution. N?
2. N2V + 2N Sample solution. N2V

3. 14+ 1/(lgN). Sample solution. 1

(1.2) (4 points each) State whether the following are true or false. Give a brief justification for
your answer.

1. n? = Q(n?%). Sample solution. True, since n® > en?? for ¢ = 1.

2. (Ign)!® = O(n). Sample solution. True, since any polylog is asymptotically smaller
than any polynomial.

Problem 2. (40 points) You are given an array A of size N, indexed as usual from 0 to N.
You are also given that A contains exactly 4 distinct values vg, vy, v2, v3. Formally:

(for all i from 0 to N — 1 inclusive: A[i] = vp or A[i] = v; or A[i] = vg or A[i] = v3)
and
Vo < V1 < v < U3

You are also given what the actual values are.

(2.1) (20 points) Give a comparison-based sorting algorithm
lsort(int[] A, int vO, int v1, int v2, int v3)
which sorts A, where vO, v1, v2, v3 are the values occurring in A, as discussed above.

Your algorithm must have worst case running time in O(N). Remember that worst case is
a limit on the running time for all inputs, unlike average case running time. You may give
pseudocode or actual Java code. Do not make any assumptions about the relative
frequencies of occurrence of v0, vl1, v2, v3.

(2.2) (20 points) Prove that your algorithm has worst case running time in O(N).

No credit for an O(N lg N) running time algorithm.

Sample solution.

(2.1) First, modify the partition procedure of Quicksort (text, page 291) so that (1) a pivot can
be given as an argument, and (2) elements in the left partition are strictly less than the pivot.
Note that I removed the auto increment/decrement operators, since the needed modification
doesn’t work correctly in their presence.



// partition the subarray al[lo .. hi] by returning an index j
// so that allo .. j-1] <= a[j] <= a[j+1 .. hi]
private static int partition(Comparable[] a, int lo, int hi, Comparable v) {

int i = 1o - 1; //NOW MUST INCLIDE a[lo] IN THE PARTITION
int j = hi + 1;
// Comparable v = a[lo];  REMOVED

while (true) {
{invariant: a[lo..i] < v /\ al[j..hi] >= v}
// find item on lo to swap

i+=1;
while (less(alil, v)) {
i+=1;
if (i == hi) break;
}
// al[lo ... i-1] < v /\ a[i] >= v

// find item on hi to swap

=1

while (less(v, aljl) || equal(v, aljl)) { //CHANGED
=1
if (j == lo) break;

+

// alj+1..hi] >= v /\ al[j]l < v
//NOTE al[j] strctly less than pivot

// check if pointers cross
if (i = j+1) break; //CHANGED TERMINATION TEST
// allo..i-1] < v /\ a[j+1l..hi] >= v

exch(a, i, j);
//after swap, ali] < v /\ al[j] >= v, hence
//  allo..i]l < v /\ alj..hi]l >=v

// put v = a[j] into position
//exch(a, lo, j); REMOVED

//  allo..i-1] < v /\ al[j+1..hi] >= v /\ 1 = j+1
//  allo..jl < v /\ alj+1..hi] >=v /\ i = j+1
return j;

// is v =w?
private static boolean equal(Comparable v, Comparable w) {
return (v.compareTo(w) == 0);

}



Next, call this modified partition in succession using the pivots vy, v9, v3. Will result in a sorted
array.

private static lsort(int[] a, int vO, int v1, int v2, int v3) {
int i1 = partition(a, O, a.length-1, v1);
//al0..i1] = vO /\ al[i1l+1...N] = {v1,v2,v3}
int i2 = partition(a, il+1, a.length-1, v2);
//al0..i1] = v0 /\ alil+1..i2] = v1 /\ al[i2+1...N] = {v2,v3}
int i3 = partition(a, i2+1, a.length-1, v3);
//al0..i1] = vO /\ alil+1..i2] = v1 /\ al[i2+1...i3] = v2 /\ al[i3+1...N] = v3

(2.2) partition still runs in linear time, since the same argument continues to apply: each
element of the array section being partitioned is acessed at most 3 times (once for comparison
with the pivot, and twice for swapping).

lsort calls partition 3 times, and hence also runs in linear time.



Problem 3. (40 points) We wish to add to a regular BST a field min for each node x which
records the minimum value in the subtree roooted at x.

(3.1) (20 points) Give a modified put procedure (see text, p. 399) which maintains the min
field.

(3.2) (20 points) Prove that your modified put has worst case running time in O(h), where h
is the height of the BST. You do not have to handle deletion.

No credit for a put procedure with running time asymptotically larger than O(h).
Sample Solution.

(3.1). Add a field m to the Node class, which maintains for each node x the minimum key that
occurs in the subtree rooted at x. Upon insertion, update the m field for each node from the
root down to the point of insertion by comparing with the key key to be inserted: if key is
smaller, then set the m field to key, otherwise leave it unchanged.

/***********************************************************************

* Insert key-value pair into BST
* If key already exists, update with new value
sk sk sk ok ok ok ok ok ok ok ok ok ok ok o s ok o o o o o ok sk sk ok ok sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk s sk sk sk s ok ok ok sk ok sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk ok ok /

// add a field m to the Node class to store the min value

private class Node {

private Key key; // sorted by key

private Value val; // associated data

private Node left, right; // left and right subtrees

private int N; // number of nodes in subtree
private Key m; // minimum key in subtree rooted at Node

public Node(Key key, Value val, int N, Key m) {

this.key = key;

this.val = val;

this.N = N;

this.m = m; //minimum key in subtree rooted at this

private Node put(Node x, Key key, Value val) {

if (x == null) return new Node(key, val, 1, val);
int cmp = key.compareTo(x.key);

if (cmp < 0) x.left = put(x.left, key, val);
else if (cmp > 0) x.right = put(x.right, key, val);
else x.val = val;

x.N =1 + size(x.left) + size(x.right);
if (key.compareTo(x.m) < 0) x.m = key; //UPDATE min
return x;

(3.2). The modification just adds an if-statement at each node on the way down. The modified
put still traverses the BST from top to bottom, doing constant work at each node. Hence
running time is still O(h).



